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Abstract
We show that the tangled nature model can be interpreted as a general
formulation of the quasi-species model by Eigen et al in a frequency-dependent
fitness landscape. We present a detailed theoretical derivation of the mutation
threshold, consistent with the simulation results, that provides a valuable insight
into how the microscopic dynamics of the model determines the observed
macroscopic phenomena published previously. The dynamics of the tangled
nature model is defined on the microevolutionary time scale via reproduction,
with heredity, variation and natural selection. Each organism reproduces at
a rate that is linked to the individuals’ genetic sequence and depends on the
composition of the population in genotype space. Thus the microevolutionary
dynamics of the fitness landscape is regulated by, and regulates, the evolution
of the species by means of the mutual interactions. At low mutation rate, the
macroevolutionary pattern mimics the fossil data: periods of stasis, where the
population is concentrated in a network of coexisting species, are interrupted
by bursts of activity. As the mutation rate increases, the duration and the
frequency of bursts increase. Eventually, when the mutation rate reaches a
certain threshold, the population is spread evenly throughout the genotype
space showing that natural selection only leads to multiple distinct species if
adaptation is allowed time to cause fixation.

PACS numbers: 87.10.+e, 87.23.−n, 87.23.Kg

1. Introduction

Explaining the observed macroevolutionary patterns as collective emergent properties of
systems with many interacting degrees of freedom, whether these be single individuals or
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‘species’, is an alluring challenge for researchers with a background in statistical physics
[1, 2]. The quasi-species model by Eigen et al [3, 4] has proved useful when investigating the
behaviour of populations in a given fixed fitness landscape and it provides a firm paradigm for
many models [5].

The fundamental idea in the approach by Eigen et al is to identify species with sequences
in genotype space. The positions in genotype space which are assigned particularly high fitness
are called wildtypes, that is, the forms that predominate in a population are well adapted to the
environment. During the reproduction event, mutations are seen as errors of the replication
of the parental sequence. The effect is thus to spread the population from the original point
to neighbouring positions in genotype space. If one were to use a classical Darwinian view
on such a process, the population would then be sharply localized in genotype space on the
position which corresponds to a high fitness: all other positions would be cancelled by their
low fitness. This can only be true if the replication process is by and large accurate. A
replication process with a too high mutation rate would produce copies of the original fit
parent with so many errors that selection is unable to maintain the population at the original
point.

By lowering the mutation rate progressively, variation would be less effective in dispersing
the population since the offspring are more similar to the parents. The quasi-species model
defines the presence of a threshold, in the mutation rate, where the multiplication process
changes drastically. The gradual decrease of the mutation rate sees the transition from a
random population, diffused as scattered points in genotype space, to a population constrained
to a few positions.

The transition of the process from a random state to an ordered one is a phase transition,
with the mutation rate acting as a control parameter. The nature of the transition has been
extensively studied. In the seminal paper by Eigen et al, where the transition was first noticed
[4], the species have a predetermined fixed fitness associated. Subsequently, the quasi-species
model has been analysed in different fitness landscapes [6, 7], for different topologies of
the genotype space [8], and for spatially resolved models [9], each confirming the original
results. Finally, the error threshold in a model with a dynamical fitness landscape [10] has
been analysed. In this case however, the dynamics is regulated artificially from outside.

It has been shown that it is possible to map the original quasi-species model onto a two-
dimensional Ising system with nearest-neighbour interaction in one direction [11], and that, in
this representation, for simple fitness landscapes, the correspondence links the error threshold
with a first-order phase transition [12]. A relation of fundamental importance by Galluccio
et al [13] proves that the error threshold naturally arises as a consequence of the model
introduced and that, more generally, for a given mutation rate pmut and a given reproduction
rate poff it is possible to determine uniquely an upper limit for the length of the genetic
sequence.

We show that the tangled nature model, introduced in detail in [14, 15], can be considered
as a general formulation of the quasi-species model. The generalization is provided by a
relaxation on the condition of fixed population size, which, in the original formulation, acts
as selection principle on the sequences. The most important feature of the tangled nature
model, for details see [14, 15], is that of creating multiple co-evolving quasi-species in a
frequency-dependent fitness landscape, where the dynamics of the landscape is an inherent
property of the model. In this paper, we present in detail the theoretical calculation of the
mutation threshold which fits the experiment accurately [15].

It is also interesting to point out the connection between the tangled nature model and
game theoretical nonlinear replicator dynamics [16]. In both cases the reproduction of a
given type of individuals depends on the configuration of the entire population. One therefore
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expects to find stable solutions to the dynamics of the tangled nature model similar to the Nash
equilibria or evolutionary stable strategies found for replicator dynamics. We have stressed
this relation by using the term quasi-evolutionary stable strategies to denote the quasi-stable
configurations of the tangled nature model.

In section 2, we review briefly the quasi-species model by Eigen et al. Section 3 briefly
discusses the definition of the tangled nature model with an intrinsically generated dynamic
fitness landscape. We discuss in detail the dynamics of the model in terms of difference
equations. Section 4 contains a discussion of the error threshold theoretically and numerically
and finally in section 5 we discuss the relation between the tangled nature model and the
quasi-species model by Eigen et al.

2. The quasi-species model

Eigen et al [4] introduced a model in which the effects of various mutation rates on a
process of replication of finite sequences of binary values are explored. Each sequence
Sa = {

Sa
1 , Sa

2 , . . . , Sa
L

}
, where Sa

i = {−1, +1}, i = 1, 2, . . . , L, in genotype space represents
a species. Each existing sequence Sa replicates, with a constant rate pa

off = poff(Sa) and
degrades with a constant and universal (i.e., independent of position) rate pkill. The number
na(t) = n(Sa)(t) of copies of a given sequence Sa varies with time. The replication process
is not exact but prone to error. During the replication, the rate of mutation per gene is pmut.

The model has been solved analytically in the limit where one particular sequence is
assumed to have a high fitness, while mutants are less fit. For low mutation rate, the
population is concentrated around the top of the mountain in the fitness landscape. The
dominant sequence with its surrounding mutants is called a quasi-species. As the mutation
rate increases, the population drifts away from the top down to the ridges. Eventually, when
the mutation rate reaches a threshold value pth

mut, the population is spread evenly throughout
the fitness landscape, that is, a phase transition occurs at pth

mut.

3. The dynamics of the tangled nature model

The dynamics of the tangled nature model is defined via an elementary time step where
(a) one organism is randomly selected and killed with constant probability pkill, (b) one
organism is randomly selected and with probability poff , that depends on the current
composition of the population in genotype space, two offspring are reproduced and the parent
is then removed from the ecology [14, 15].

By analysing the dynamics it is possible to characterize the stable configurations that may
develop in the tangled nature model.

The difference equation describing the variation of the number of individuals of a position
Sa during a single time step can be derived as follows. Let na(t) denote the number of
individuals at position Sa . Then

na(t + 1) = na(t) +
∑
E

�na(E)P (E) (1)

where t is the number of time steps and E refers to any event that can affect na , that is, an
annihilation event or reproduction event, by an amount �na(E). The event E occurs with
probability P(E).

For a killing event, �na(E) = −1 and the probability of a killing event is the product
of the probability of choosing an organism in position Sa times the killing rate, that is,
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Figure 1. Probabilities associated with a reproduction event. An organism at position Sa is shown
with an open circle and any other type of organism with a solid circle. The columns labelled ‘E’
represent the three possible outcomes of a reproduction event; in the columns labelled by ‘�na(E)’
the variation of na associated with event E is listed. The probabilities involved are given in the
columns marked P (E), where p0 is the probability of no mutations during a reproduction event and
1 −p0 the probability of at least one mutation while p̃ is defined in equation (6). (a) Reproduction
originating from Sa . (b) Evaluation of the backflow associated with the events S �= Sa → Sa .

P(E) = ρa(t)pkill , where we have introduced the density ρa(t) = na(t)∑
a na(t)

of organisms at
position Sa .

For a reproduction event, distinction has to be made between the case where reproduction
originates from position Sa , see figure 1(a) and reproduction originating from any other
position Sb different from Sa , which we will call the ‘backflow’ contribution, see figure 1(b).

The first case happens with probability P = ρa(t)p
a
off(t), that is, the probability of picking

an organism of position Sa times the fitness of Sa . In this event, na can decrease by one unit
(�na = −1), increase by one unit (�na = +1) or remain constant (�na = 0), with relative
probabilities as calculated in figure 1(a).

The probability of having i mutations during a single replication is

pi =
(

L

i

)
pi

mut(1 − pmut)
L−i ∀i = 0, 1, . . . , L with

L∑
i=0

pi = 1. (2)

From figure 1(a) we can deduce the net contribution to the population at position Sa by
summing over all possible events:∑

E

�na(E)P (E) = p2
0 − (1 − p0)

2 = 2p0 − 1. (3)

The ‘backflow’ contribution occurs with probability∑
b �=a

ρb(t)p
b
off(t). (4)

In this case, the variations and the probabilities involved are shown in figure 1(b).
In order to mutate from Sb to Sa, Ldab mutations are necessary, where

dab = d(Sa, Sb) = 1

2L

L∑
i=1

∣∣Sa
i − Sb

i

∣∣ (5)

so

p̃ = p
Ldab

mut (1 − pmut)
L(1−dab) (6)

is the probability of creating an organism in position Sa originating from position Sb.
As Ldab mutations are needed, the probability involved in a backflow contribution from

position Sb is, see figure 1(b),∑
E

�na(E)P (E) = 2p̃(1 − p̃) + 2p̃2 = 2p̃ = 2p
Ldab

mut (1 − pmut)
L(1−dab). (7)
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Thus, the full expression for the difference equation is

na(t + 1) = na(t) − ρa(t)pkill + ρa(t)p
a
off(t)(2p0 − 1)

+ 2
∑
b �=a

ρb(t)p
b
off(t)p

Ldab

mut (1 − pmut)
L(1−dab). (8)

This is the equivalent of the quasi-species equation by Eigen et al. The main difference is that
the rates of production depend on the current composition in population space.

Summing equation (8) over all positions in genotype space we find, as expected,

N(t + 1) = N(t) − pkill + 〈poff〉. (9)

From the simulations we know that in the limit of strong interactions among the
individuals, the dynamics is intermittent [14, 15]. Extended periods are dominated by a
network of few heavily occupied positions. These periods, called quasi-evolutionary stable
strategies (q-ESS), are interrupted by sharp bursts where the configuration of the species
changes rapidly and significantly. In order to describe the dynamics, we impose a stability
condition on the difference equation: we require that within a single q-ESS, the average number
of individuals remains constant. Moreover, the q-ESS states are dominated by some very fit
positions surrounded by unfit neighbouring positions. Thus we can neglect the backflow
contribution in the difference equation, equation (8), and obtain

na(t + 1) = na(t) + ρa(t)
[
pa

off(t)(2p0 − 1) − pkill
]
. (10)

Averaging over time, the equation becomes

na = na + ρap
a
off(2p0 − 1) − ρapkill. (11)

Assuming that ρap
a
off = ρap

a
off , the fitness for all positions in the set Spoff=pq

:

pa
off = pkill

2p0 − 1
≡ pq. (12)

With pmut = 0.008 we have p0 = (1 − pmut)
L = 0.852 for L = 20; using pkill = 0.2, we find

pq = 0.284 consistent with the observation in figure 2.
Neglecting the backflow is valid if all terms

ρb(t)p
b
off(t)p

Ldab

mut [1 − pmut]L(1−dab) = ρb(t)p
b
off(t)p

Ldab

mut [1 − L(1 − dab)pmut + · · ·]
are small. Since pmut � 1, the leading term is ρb(t)p

b
off(t)p

Ldab

mut . This can be neglected if
Ldab > 1. With Ldab = 1 it can be neglected since none of the nearest neighbours is fit, as
pb

off(t) � 1.

4. The error threshold

The discussion of the q-ESS state was made with the implicit assumption of the existence of
q-ESS states. We will find here that we can establish qualitative arguments that ensure the
existence of the q-ESS states.

We have seen that q-ESS states are possible only if the interactions are important to the
weight function. Furthermore, the average fitness pq of the fit positions in the q-ESS state is
given by

pq = pkill

2(1 − pmut)L − 1
(13)

and thus is related to the mutation rate. This relation states that the fit positions are those that
are able to counterbalance the killing by the production of offspring.
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−8.0 −6.0 −4.0 −2.0 0.0
H Hhectic

0
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2

3

4

P
(H

)

Figure 2. The probability density function of the weight function H = ln
(

poff
1−poff

)
during a q-ESS

state of a simulation (solid line) and during a transition between two q-ESS states (dashed line).
During a q-ESS state (solid line) positions range in two sets: unfit positions, for which the weight
function is lower than −3.0 and fit positions, for which the fitness is greater then the average value

〈H 〉 = ln
(

1−pkill
pkill

)
≈ −1.38 = Hhectic, indicated by a vertical dotted line. During a transition

(dashed line) the fitness of all positions is normally distributed around Hhectic where all positions
reproduce (on average) at the same rate, equal to the killing rate. Note the support of the weight
function in the hectic phase exceeds Hq , ensuring that the positions in genotype space are able to
fulfil the q-ESS balance equation (13). The parameters (for precise definitions, see [14, 15]) are

pkill = 0.2, µ = 1/1000 · ln
(

1−pkill
pkill

)
≈ 0.0014, C = 10.0 and pmut = 0.008.

Equation (13) is the starting point for determining a necessary condition for the existence
of a q-ESS state. We have investigated the behaviour of the dynamics as a function of mutation
rate. The results are illustrated in figure 3.

For increasing pmut, the duration of q-ESS states decreases. Above a threshold pth
mut of

the mutation rate pmut, there are no more q-ESS states: the dynamics is completely hectic.
For intermediate values of pmut, the transitions between two q-ESS states are extended and the
initial transient can be very long.

This numerical result shows that the model defines an error threshold for the mutation
rate above which no q-ESS state exists.

From equation (13) we obtain for the weight function

Hq = ln

(
pq

1 − pq

)
= ln

(
pkill

2p0 − 1 − pkill

)
. (14)

When the mutation rate is close to pth
mut, most of the simulations are in hectic states, for

which the fitness is equal to pkill and therefore we might assume that the weight function is
equal to

Hhectic = ln

(
pkill

1 − pkill

)
. (15)

Stable q-ESS states can only develop from a hectic phase when some positions, due
to fluctuations, acquire sufficient fitness to be consistent with the q-ESS balance given by
equation (13). That is, fluctuations in the weight functions in the hectic phase must allow

Hhectic +
α

C
� Hq (16)

where α ∈ (0, 1) describes the width of the distribution of weight functions in the hectic phase,
see figure 2, and C determines the width of the distribution of the possible coupling strengths
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Figure 3. Occupation plots for different values of the mutation rate. The y-axis refers to an
arbitrary enumeration of all positions in genotype space. Occupied positions are indicated by a

black dot. Results shown are for pkill = 0.2, µ = 1/1000·ln
(

1−pkill
pkill

)
and C = 0.05. (a) Mutation

rate: pmut = 0.009. The initial transient is extended. (b) Mutation rate: pmut = 0.009 25. The
initial transient has the same extension of any q-ESS state. (c) Mutation rate: pmut = 0.0095.
The transition between two q-ESS state are extended. (d ) Mutation rate: pmut = 0.01. The
initial transient is very extended. (e) Mutation rate pmut = 0.0104. The initial transient and any
transitions are extensively hectic. ( f ) Mutation rate pmut = 0.0108. There is no q-ESS state.

between the individuals. Small C corresponds to the strong coupling regime while large C
corresponds to the weak coupling limit. Using equation (14) and equation (15) we obtain

ln

(
pkill

1 − pkill

)
+

α

C
� ln

(
pkill

2p0 − 1 − pkill

)
(17)

which, translated to the mutation rate pmut, becomes

pmut � 1 −
[

e−α/C(1 − pkill) + 1 + pkill

2

]1/L

= pth
mut. (18)
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Figure 4. The computational determination of the error threshold. The loss of q-ESS states occurs
for mutation rates above the solid circles. The data, compared with the theoretically predicted
error threshold pth

mut (solid line), indicate a value of α = 0.07, see equation (18). The parameters
of the simulations are L = 20, µ = 0.005 and pkill = 0.2.

Equation (18) defines the functional dependency of the error threshold in terms of α,C and
pkill. In figure 4 we use α as a fitting parameter and show pth

mut as a function of C.
The error threshold has been determined numerically by iterating many simulations with

increasing value of the mutation rate for a given C. When no q-ESS emerges, we have reached
the error threshold; the lowest pmut for which only a hectic state exists is the estimated value
of pth

mut.
The numerical results confirm the theoretical predictions given by equation (18) and,

qualitatively, are in line with the results of Eigen et al [3, 4]. The transition in the tangled
nature model appears to be sharp, that is, for values of pmut greater than pth

mut q-ESS states are
impossible, while for pmut � pth

mut q-ESS are possible, see figure 3.
Since the factor α represents the width of the distribution of the weight function during

a hectic state it is linked to J = {Jab}, the set of interactions, and also to µ. This makes it
difficult to analytically determine α.

5. Discussion

In the tangled nature model the competition between the organisms is described by the mutual
interactions, creating a dynamical rugged fitness landscape where the fitness of a position is
determined by the temporal evolution of the ecology. The dynamics, illustrated in [14, 15]
selects few heavily occupied positions in genotype space surrounded by other sequences in the
immediate vicinity. The organisms in the central positions are only able to reproduce actively.
They sustain themselves and all the surrounding ecology. This situation is possible only as
long as the mutual interactions are sufficient to counterbalance the dispersive action caused
by mutations.

Thus we have derived an interpretation of the tangled nature model as an evolutionary
quasi-species model. In the tangled nature model however, the fitness landscape is not
fixed. Due to the frequency-dependent fitness landscape, the tangled nature model allows the
emergence of multiple coexisting quasi-species during q-ESS states. Also, it should be noted,
that in contrast to the model by Eigen et al [3, 4], the quasi-species in the tangled nature model
are not absolute quantities but may change from one q-ESS to another.
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We have discussed and identified the error threshold in the tangle nature model as the
mutation rate at which the model is unable to support, over extended periods in time, the
occupation of well-defined multiple coexisting genotypes. A formula for the parameter
dependence of the error threshold was derived, see equation (18). In particular, the error
threshold depends on the genome length as 1/L, (for large L) which is consistent with the
findings in the quasi-species models, see [5, 13]. This result suggests that the mutation rate
per base pair itself is subject to selection in a way to make the mutation per base pair decrease
with increasing genome length. This is indeed observed in nature.
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